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The graph theoretic concept of maximal independent set arises in several practical problems in computer
science as well as in game theory. A maximal independent set is defined by the set of occupied nodes that
satisfy some packing and covering constraints. It is known that finding minimum and maximum-density
maximal independent sets are hard optimization problems. In this paper, we use cavity method of statistical
physics and Monte Carlo simulations to study the corresponding constraint satisfaction problem on random
graphs. We obtain the entropy of maximal independent sets within the replica symmetric and one-step replica
symmetry breaking frameworks, shedding light on the metric structure of the landscape of solutions and
suggesting a class of possible algorithms. This is of particular relevance for the application to the study of
strategic interactions in social and economic networks, where maximal independent sets correspond to pure
Nash equilibria of a graphical game of public goods allocation.
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I. INTRODUCTION

It is well known that an important family of computation-
ally difficult problems are concerned with graph theoretical
concepts, such as covering and packing �1�. Among them,
the problem of finding a minimum vertex cover has probably
become the typical example of NP-hard optimization prob-
lems defined on graphs �2� and it has recently attracted a lot
of attention in the statistical physics community for its rela-
tion with the physics of spin glasses �3�. In particular, in
statistical mechanics the vertex cover problem is usually
studied in its dual representation of hard-core lattice gas,
where coverings are mapped into particles of unit radius that
cannot be located on neighboring vertices. In graph theory,
such a dual configuration defines an independent set, i.e., a
set of vertices in a graph no two of which are adjacent. More
formally, given a graph G= �V ,E� a subset I�V of vertices is
an independent set if for every pair of vertices i , j�I the
edge �i , j��” E. The size of an independent set is the number
of vertices it contains. So, given a graph G with N vertices
and an integer M �N it is reasonable to ask if it is possible to
find an independent set of size at least M. This decisional
problem was proved to be NP complete and its optimization
version, i.e., finding an independent set of the largest size
�maximum independent set�, is NP hard �1,2�. From the defi-
nition it is straightforward to notice that the complement of
an independent set is a vertex cover and finding a minimum
vertex cover is exactly equivalent to find a maximum inde-
pendent set.

We are here interested to a slightly different graph theo-
retic problem, dealing with the concept of maximal indepen-
dent set �mIS�, that is an independent set that is not a subset
of any other independent set. This means that adding a node
to a maximal independent set would force the set to contain
an edge, contradicting the independence constraint. Again,

by removing a vertex from an independent set, we still get an
independent set but the same is not true for maximal inde-
pendent sets. In this sense, mISs present some property typi-
cal of packinglike problems that makes the corresponding
optimization problem quite different from the widely studied
vertex cover problem. In particular, it turns out that mISs are
actually the intersection of independent sets and vertex cov-
ers. See Fig. 1 for some examples of mISs in a small graph.

A maximal independent set can be easily found in any
graph using simple greedy algorithms, but they do not allow
to control the size of the mIS. As for the independent set
problem, the complexity increases if we are asked to find
maximal independent sets of a given size M and, in particu-
lar, the problems of finding maximal independent sets of
maximum and minimum size are NP hard. Note that as well
as a maximum mIS �MIS� is equivalent to a minimum vertex

FIG. 1. �Color online� Example of 4 maximal independent sets
�mIS� out of the 11 possible ones for this graph with 9 vertices.
Vertices labeled with 1 belong to the mIS.
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cover, a minimum mIS �mis� is often addressed as minimum
independent dominating set �2�.

Apart from the purely theoretical interest for problems
that are known to be computationally difficult, finding maxi-
mal independent sets plays an important role in designing
algorithms for studying many other computational problems
on graphs, such as k—coloring, maximal clique, and maxi-
mal matching problems. Moreover, distributed algorithms for
finding mISs, such as Luby’s algorithm �4�, can be applied to
networking, e.g., to define a set of mutually compatible op-
erations that can be executed simultaneously in a computer
network or to set up message-passing-based communication
systems in radio networks �5�. One recent and interesting
application is in microeconomics, where maximal indepen-
dent sets can be identified with Nash equilibria of a class of
network games representing public goods provision �6,7�.
Hence, studying maximal independent sets allows to under-
stand the properties of Nash equilibria in these network
games.

Methods from statistical mechanics of disordered systems
turned out to be extremely effective in the study of combi-
natorial optimization and computational problems, in par-
ticular in characterizing the “average case” complexity of
these problems, i.e., studying the typical behavior of ran-
domly drawn instances �ensembles of random graphs� �8�
that can be very different from the worst case usually ana-
lyzed in theoretical computer science. Following the stan-
dard lattice gas approach, we represent maximal independent
sets as solutions of a constrained satisfaction problem �CSP�
and provide a deep and extensive study of their organization
in the space �0,1�N of all lattice gas configurations.

On general graphs the number of maximal independent
sets is exponentially large with the number of vertices N,
therefore, an interesting problem is to compute their number
as a function of their size M. On random graphs, this number
can be evaluated using different methods. An upper bound is
obtained analytically using simple combinatorial methods,
whereas a more accurate estimate is given by means of the
replica symmetric cavity method. These methods allow to
compute the entropy of solutions �i.e., of maximal indepen-
dent sets� as a function of the density of coverings �=M /N
and are approximately correct in the large N limit.

There are density regions, in which no maximal indepen-
dent set can be found, that correspond to the unsatisfiable
�UNSAT� regions of the phase diagram of the associated
CSP. We study the structure of this phase diagram as a func-
tion of the average degree of the graph �K for random regular
graphs and z for Erdös-Rényi random graphs�. Since the rep-
lica symmetric �RS� equations �belief propagation� are not
always exact, we study their stability in the full range of
density values � and discuss the onset of replica symmetry
breaking �RSB�. This is expected, because both problems of
finding minimum and maximum mISs are NP hard. The two
extreme density regions are not symmetric and different be-
haviors are observed; in particular while RS solutions are
stable in the low density region they are unstable in the large
density region. For random regular graphs with connectivity
K=3, general one-step replica symmetry breaking �1RSB�
studies show a dynamical transition in the low density region
and a condensation transition at high densities �accompanied

by a dynamical one�. In the latter case, the complexity re-
mains zero in both the RS and 1RSB phases.

The theoretical results valid on ensembles of graphs, are
tested on single realizations using different types of algo-
rithms. Greedy algorithms converge very quickly to maximal
independent sets of typical density, around the maximum of
the entropic curve. By means of Monte Carlo methods, as
well as message passing algorithms, we can explore a large
part of the full range of possible density values. As expected,
finding maximal-independent sets becomes hard in the low
and high-density regions, but each algorithm stops finding
mISs at different density values.

The paper is organized as follows. In the next section, we
recall some known mathematical results and discuss related
works in computer science, economics, and physics; Section
III is instead devoted to present some rigorous results on the
spatial organization of maximal independent sets �in their
lattice gas representation�. We develop the cavity approach in
Sec. IV, with both the RS solution and the discussion of the
replica symmetry breaking in regular random graphs. From
Sec. V, we move our attention to the problem of developing
algorithms to find maximal-independent sets of typical and
nontypical size �i.e., density ��. We present a detailed analy-
sis of greedy algorithms, and put forward several different
Monte Carlo algorithms, whose performances are compared
with one of the best benchmarks used in CSP analysis, the
belief propagation-guided decimation. Conclusions and pos-
sible developments of the present analysis with application
to computer science and game theory are presented in Sec.
VI.

Some more technical results are reported in the appen-
dixes. In Appendix A, we compute upper bounds for the
entropy of maximal independent sets in random regular
graphs and Poissonian random graphs using a combinatorial
approach in the annealed approximation �first and second
moment methods�; while Appendix B contains a proof of the
results in Sec. III. In Appendix C, we discuss the Survey
Propagation and criticize its results. Appendix D is devoted
to the important calculations for the RS and 1RSB stability
analysis. In Appendix E, we shortly describe the population
dynamics algorithm that is used to solve some equations in
the paper. In Appendix F, we analyze separately the two
constraints defining a mIS, i.e., neighborhood covering and
hard-core particle packing problems that approximate �from
above� the correct entropy in the low and high density re-
gions respectively. Finally, in Appendix G, we briefly con-
sider the problem of enumerating mISs of higher order, that
is also relevant to study stable specialized Nash equilibria of
some network games �6�.

II. RELATED WORK AND KNOWN RESULTS

This section is devoted to collect and briefly summarize a
large quantity of results and works directly or indirectly re-
lated to maximal independent sets in graphs. For simplicity
we have divided them depending on their fields of applica-
tion.

A. Computer science and graph theory

A first upper bound for the total number of maximal in-
dependent sets was obtained by Moon and Moser �1965�
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showing that any graph with N vertices has at most 3N/3 mISs
�9�. The disjoint union of N /3 triangle graphs is the example
of a graph with exactly 3N/3. On a triangle-free graph, the
number of mISs is instead bounded by 2N/2 �10�.

In case we are interested to the number of mISs of a fixed
size M, tighter bounds are available. In relation to coloring, it
was shown by Byskov �11� that the number of mISs of size
M in any graph of size N is at most

� N

M �M−�N mod M�� N

M
+ 1�N mod M

, �1�

while the number of mISs of size �M is at most 34M−N4N−3M

�12�. These upper bounds can be compared with those pre-
sented here and obtained using nonrigorous methods �see
Tables I and II�.

Despite these mathematical results, counting maximal in-
dependent sets is mainly a computational problem. In par-
ticular, listing all mISs of a given graph and retaining the
ones of maximum and minimum size allows to solve the
maximum independent set and minimum independent domi-
nating set problems, that are NP hard. Again, a list of all
mISs can be exploited to find three-coloring of a graph and

to solve other difficult problems �13�. For this reason, re-
searchers have studied algorithms to list all maximal inde-
pendent sets efficiently in polynomial time per output set,
i.e., polynomial delay between two consecutively produced
mISs �14�. Even faster is the celebrated randomized distrib-
uted algorithm proposed by Luby, and based on message-
passing technique, that works in O�log N� time �4�. The main
problem is that the number of mISs is in general exponential
with the number of vertices N, therefore the total time re-
quired to list all maximal independent sets is still too large
for computational purposes.

Another important result is the inapproximability within
any constant or polynomial factor of the associated optimi-
zation problem. Indeed, a branch of computer science is in-
terested in proving the existence of algorithms that find in
polynomial time suboptimal solutions to optimization prob-
lems that are NP hard. These algorithms can be proved to be
optimal up to a small constant or a polynomial factor �see
e.g., �15��. When this can be done, the optimization problem
is approximable. For the minimum vertex cover it is possible
to find a cover that is at most twice as large as the optimal
one, therefore, minimum vertex cover �MVC� is approx-
imable with a constant factor of 2. On the contrary the maxi-
mum mIS problem �i.e., finding a MVC configuration but
maintaining the “maximality” condition at every step� is not
approximable within any constant or polynomial factor �16�.
This result shows that maximality condition is not a minor
detail and actually has a profound impact on the properties of
the computational problem.

B. Economics and game theory

The lattice gas configurations associated with maximal
independent sets are Nash Equilibria of a discrete network
game, called best shot game, recently studied by Galeotti et
al. �7� and previously introduced for the case of complete
networks by Hirshleifer �17�. The best shot game is a toy
model for the type of strategic behaviors that emerges in
many social and economic scenarios ranging from informa-
tion collection to public goods, i.e., wherever agents are al-
lowed to free ride and exploit the actions of their peers.

A more general game theoretic framework for the alloca-
tion of public goods on a network structure was proposed by
Bramoullé and Kranton �6�. In their game, agents are located
on the nodes of a network and have to decide about the
investment of resources for the allocation of some public
goods. An agent can purchase the good for a fixed cost c,
cooperate with neighboring agents sharing a lower individual
investment �i.e., �c�, or free ride possibly exploiting a
neighbor’s investment. Two classes of equilibria exist: spe-
cialized equilibria, in which agents either pay all cost c or
free ride, and mixed equilibria where cooperation is present.
However, only specialized equilibria are stable and for this
reason we can limit the analysis to the discrete case with
only two actions: action 1 �full cost investment� and action 0
�free riding� �7�. In the best shot game agents possible ac-
tions are restricted to these two options. Independent sets
arise because agents receive positive externalities, i.e., they
prefer not to contribute if at least one of their neighbors

TABLE I. Erdös-Rényi Graphs of average degree z. Comparing
lower and upper bounds �min

lower and �max
upper, obtained with the first

moment method, with the values that BP �see Sec. V� equations
predict �min

BP and �max
BP .

z �min
lower �min

BP �max
BP �max

upper

3 0.253 0.301 0.561 0.631

4 0.216 0.244 0.504 0.564

5 0.190 0.208 0.461 0.511

6 0.170 0.183 0.425 0.468

7 0.155 0.165 0.396 0.432

8 0.143 0.150 0.370 0.403

9 0.132 0.138 0.350 0.377

10 0.124 0.129 0.331 0.355

TABLE II. Random Regular Graphs of degree K: Comparing
lower and upper bounds �min

lower and �max
upper, obtained with the first

moment method, with the values that BP �see Sec. V� equations
predict �min

BP and �max
BP . For ���s1

BP, we need damping to converge
BP equations while for ���s2

BP BP equations do not converge even
with damping.

K �min
lower �min

BP �s1

BP �s2

BP �max
BP �max

upper

3 0.233 0.264 0.425 0.458 0.649

4 0.20 0.223 0.381 0.419 0.578

5 0.177 0.196 0.349 0.387 0.522

6 0.160 0.175 0.324 0.360 0.476

7 0.147 0.159 0.166 0.303 0.338 0.439

8 0.135 0.146 0.157 0.285 0.319 0.408

9 0.126 0.136 0.150 0.272 0.301 0.382

10 0.118 0.127 0.144 0.258 0.287 0.359
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already does. The independent sets are maximal because the
contribution is a dominant action, i.e., one is better off by
contributing if none of the neighbors does. The set of Nash
equilibria of the best shot game on a graph G is exactly the
set of maximal-independent sets of G.

In the case of public goods, the objective function of a
Social Planner is to find optimal Nash equilibria that are
Nash equilibria maximizing the sum of individual utilities by
minimizing the global cost. We have seen that finding MIS
and mis is an NP hard optimization problem, therefore, we
expect that self-organizing toward such optimal equilibria is
an equally difficult task for a network of economic agents. It
is thus of great importance to develop simple mechanisms to
trigger optimization and study how such mechanisms could
be implemented in realistic situations for instance by means
of economic incentives �18�.

It is worth noting that recently some techniques from sta-
tistical physics have been applied to the study of the best
shot game �19�. The work by Lopez-Pintado �19�, indeed, put
forward a mean-field theoretical analysis of the best-response
�BR� dynamics that provides an estimate of the average den-
sity of contributors �action 1� in Nash Equilibria on general
uncorrelated random graphs. In Sec. V, we will discuss the
relation between best-response dynamics and another algo-
rithm �the Gazmuri’s algorithm� that can be used to find
Nash equilibria �i.e., mIS�.

C. Physics

The hardcore lattice gas representation allows to map
maximal independent sets on the solutions of a constraint
satisfaction problem. As mentioned in the introduction, simi-
lar CSPs have been recently studied in the statistical mechan-
ics community to model systems with geometrical or kinetic
constraints, and exhibiting a glass transition.

Kinetically constrained models �20� are used as simple,
often solvable, examples of the glass transitions. For in-
stance, the Kob-Andersen model �21� is a lattice gas with a
fixed number of particles, in which a particle is mobile if the
number of occupied neighbors is lower than a given thresh-
old, mimicking the cage effect observed in supercooled liq-
uids. At sufficiently large density of particles, the system can
be trapped in some blocked configuration, in which all par-
ticles are forbidden to move. Though the model is dynamical
and satisfies constraints of a kinetic nature, the number of
blocked states depending on the parameters of the system
can be studied with a purely static, thermodynamic approach
�á la Edwards� �22�. These calculations, performed using the
transfer matrix methods, the replica method and numerically
by thermodynamic integration, have been applied to several
models exhibiting dynamical arrest, such as the Fredrickson-
Andersen model �23�, the zero-temperature Kawasaki ex-
change dynamics �24,25� or urn models �26�, and recently
extended to the study of Nash equilibria of Schelling’s model
of segregation �27�.

Studying the dynamical arrest only by means of thermo-
dynamic methods leads to underestimate the role of the dy-
namical basins of attraction of different blocked configura-
tions �Edwards measure vs dynamical measure�. On the

contrary, these methods become exact or approximately cor-
rect in problems with constraints due to geometric frustra-
tion, such as hard-core lattice gas models �28� and hard-
sphere packing problems �29�. As mentioned in the
Introduction, the simplest hard-core lattice gas model is the
dual of the vertex covering where the close-packing limit
�high density regime� corresponds exactly to the minimum
vertex cover problem �i.e., maximum independent set prob-
lem�. On random graphs with average degree z�e, the ver-
tex covering problem presents frustration and long-range
correlations, that are responsible of replica symmetry break-
ing �30�. Moreover, the numerical detection of hierarchical
clustering in the solution’s landscape suggests the existence
of levels of RSB higher than 1RSB �31�.

A first attempt to model a purely thermodynamically
driven glass transition in a particle system was proposed by
Biroli and Mézard �BM�, that studied a lattice glass model
on regular lattices �32� and random regular graphs �33�, in
which configurations violating some locally defined density
constraints are forbidden. More precisely, a particle cannot
have more than � among its k neighbors occupied. At zero
temperature, the constraints become hard and the model is
effectively a CSP defined on a general graph. The BM model
is very similar to our problem as shown by mapping back
particles onto uncovered vertices and vacancies onto covered
ones. In a configuration defining a maximal independent set,
every uncovered node has at most k−1 uncovered neighbors,
because at least one of them has to be covered. Therefore,
our model is similar to a BM model with �=k−1. However,
a further constraint on covered nodes is present, requiring
vacancies to be completely surrounded by particles. Maximal
independent sets are thus similar to lattice glass configura-
tions in the close packing regime, but the existence of the
packinglike constraint prevents the statistical mechanics of
the two models to be exactly the same. A generalization of
BM model with attractive short rang interactions has been
studied in �34�.

Finally, a recent paper by Tarzia and Mézard �35� puts
forward a model of hypervertex covering �HVC� that is an
abstraction of the Group Testing procedures. The model can
be defined on a random regular bipartite factor graph with N
variables and M constraints and consists in finding a cover of
the variables �that are 1 or 0 if covered or uncovered, respec-
tively� subject to the condition that the sum of the variables
involved in each constraint is at least 1. This hypervertex
cover constraint is somewhat similar to the maximal inde-
pendent set constraint that requires at least one of the nodes
in the set composed by a node and its neighborhood to be 1.
On the other hand, maximal independent sets are defined on
real graphs instead of factor graphs and there is a further
packinglike constraint �no neighboring 1s are allowed�.

In conclusion, similar problems are current matter of in-
vestigation in the statistical physics community �36�, but in
our opinion the mIS problem is different from all them and
substantially new due to the presence of two local constraints
with contrasting effects.

III. MAXIMAL INDEPENDENT SETS: EXISTENCE AND
ORGANIZATION

A preliminary account of the statistical properties of
maximal independent sets can be obtained from simple but
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rigorous mathematical analyses providing �i� lower and up-
per bounds for the existence of mISs with density � of cov-
ered nodes, and �ii� information on their spatial arrangement
in the space of all possible binary configurations on a graph.

We have anticipated in the previous sections that in gen-
eral it is not possible to find maximal independent sets at any
given density � of covered nodes. This is due to the conflict-
ing presence of coveringlike constraints �favoring higher
densities� and packinglike constraints �favoring lower densi-
ties�. We thus expect to find mISs only within a finite range
of density values ��min,�max�. On random graphs, lower
bounds �min

lower for the minimum density value and upper
bounds �max

upper for the maximum density value can be easily
obtained by means of annealed calculations employing the
first moment method �see Appendix A�. These values are
reported in Table I for the case of Erdös-Rényi �ER� random
graphs and in Table II for random regular graphs �RRGs�,
i.e., graphs in which connections are established in a com-
pletely random way with the only constraint that all nodes
have the same finite degree K.

In addition to the results of these combinatorial methods,
very general results on the structure and organization of
mISs can be obtained rigorously starting from the lattice gas
representation. �We refer to Appendix B for the proofs of all
propositions contained in the present section.� An indepen-
dent set I is a configuration with binary variables �i
� �0,1�, in which �i=1 if the node i belongs to the indepen-
dent set �i� I� and �i=0 if the node is not part of it �i� Ic�.
We are interested only in those independent sets that are
maximal and we focus on the behavior of single variables as
well as sets of variables. We first introduce some useful con-
cepts.

Consider a set S of solutions of the mIS problem, that is a
set of configurations �� , with the property of being a mIS for
a given graph G. A variable �i is frozen in the set S if it is
assigned the same value in all configurations belonging to S.
Therefore, by flipping this variable we cannot obtain a con-
figuration with the property of being in the same set S. For
matter of convenience we classify these kind of variables in
a hierarchical way. The variable �i is locally frozen if we can
obtain a configuration belonging to S by flipping �i and at
most a number n of other variables � j with strictly n=o�N�.
The variable �i is instead globally frozen if, in order to have
another configuration in S, we have to flip �i and O�N� other
variables.

In the following, we consider S to be the set of all maxi-
mal independent sets in a given graph G. It is straightforward
to show that �see Appendix B�

Proposition 1. If a configuration is a maximal indepen-
dent set, then all variables �i ∀i=1, . . . ,N are at least lo-
cally frozen.

Proposition 1 shows that the Hamming distance between
two mIS configurations is at least 2, but does not specify if
this is the actual minimum in every graph and, more impor-
tantly, which is the maximum possible distance between two
mISs. A result in this direction is obtained by considering the
propagation of variable rearrangements induced by a single
variable flip. Suppose that at step t=0 a variable �i is flipped
from 0 to 1, then some of the local constraints on the neigh-
boring variables become unsatisfied and these variables have

to be flipped too. At step t=1, we flip all variables giving
contradictions and identify all other constraints that now be-
come unsatisfied. We proceed in this way until all variables
satisfy their local constraints and the configuration is again in
S. This iterative operation is usually called best-response dy-
namics in game theory �7�. In many CSPs, a similar iteration
would not converge rapidly to another solution due to the
presence of loop-induced frustration and long-range correla-
tions. In such cases, variables are globally frozen, because
their value depends on the value assumed by an extensive
number of other variables. On the contrary, in the case of
maximal independent sets, all rearrangements involve a finite
number of variables.

Proposition 2. If a variable �i of a mIS is flipped and the
variables (including �i itself) are updated just once by best-
response dynamics, the outcoming configuration is still a
maximal independent set. Moreover, (A) if a variable �i of a
mIS is flipped from 1 to 0, the best-response dynamics is
limited to the neighborhood of the node i; and (B) if instead
the variable �i is flipped from 0 to 1, the best-response dy-
namics extends at most to the second neighborhood of i.

An example of the validity of Proposition 2 is reported in
Fig. 2. In �A� we flip the top vertex from 1 �black� to 0
�white� and rearrange the rest of the mIS configuration. The
right neighbor is forced to flip 0→1, but her neighbors are 0
thus they do not flip. The rearrangement propagates up to the
neighbors of the top node. In �B� the top node is flipped from
0 to 1. The left neighbor flips to 0, thus leaving the neigh-
boring node unsatisfied. This node flips to 1, but all her
neighbors are already satisfied at 0. The rearrangement
propagates here up to the second neighborhood.

The number of variables flipped during the best-response
dynamics depends on the topological properties of the under-
lying graph. When the first and the second moments of the
degree distribution are finite, Proposition 2 implies that all
variables are only locally frozen, and starting from a mIS it
is always possible to find another mIS within a finite number
of spin flips. This is not always true for scale-free networks
with power-law degree distribution pk�k−� and ��3. In
these networks, the second moment of pk diverges with the
system’s size N, therefore, a single variable flip can induce
the rearrangement by best-response of an extensive number

FIG. 2. �Color online� Examples of rearrangements induced in a
mIS configuration by a single spin flip: �A� from 1 �black� to 0
�white� and �B� from 0 to 1.
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of other variables. An example is provided by starlike graphs
in which the only two possible maximal independent sets are
the one with the central node covered and all other nodes
uncovered and the complementary configuration. It is easy to
see that the best-response dynamics following a single flip
always extends to the whole graph and implies the rearrange-
ments of O�N� variables, that are globally frozen.

Let us exclude extremely heterogeneous starlike struc-
tures, by focusing on homogeneous graphs with bounded de-
grees, i.e., ∀i ki�const�N. Even in case of networks in
which maximal independent sets are locally frozen, these
mIS are all connected by best response dynamics, as proven
by the following result.

Proposition 3. Given a pair of maximal independent sets
I and I�, it is always possible to go from I to I� with a finite
sequence of operations, each one consisting in flipping a
single variable from 0 to 1 followed by a best-response rear-
rangement.

This statement proves exactly the connectedness of the
space of maximal independent sets under an operation that
allows to move on that space. In the thermodynamic limit,
when the distance between two mISs can be taken of O�N�,
there is a chain of at most O�N� operations to go from one
mIS to the other, and each intermediate step corresponds to a
mIS that differs from the previous and the following ones in
just a finite number of variables �due to a finite rearrange-
ment�.

In summary, we have uncovered two important properties
of the space of mISs: �1� all variables in a mIS are locally
and not globally frozen, i.e., the minimum Hamming dis-
tance between mISs is at least 2; �2� the space of mIS is
connected if we move between mIS using a well-defined
sequence of operations. It means that all mISs form a single
“coarse-grained” cluster when the appropriate scale is cho-
sen, that is that of best response rearrangement operation.
How does this picture change when we take into account
mISs at fixed density � of occupied nodes? It is not clear,
because in the rearrangement that follows each single vari-
able’s flip, the number of covered nodes changes of a finite
amount, causing only a negligible variation in the density �.
On the other hand, the length of the sequence of these op-
erations can be of O�N�, therefore two mISs at the same,
very low or very high, density could be connected by a very
long path that gradually overpasses some density barrier.
Since the proof of connectedness cannot be easily extended
to the space of mISs at fixed density �, we cannot exclude
the onset of some clustering phenomena at very low or very
high values of �. In the next section, we will try to address
this question by means of statistical mechanics methods.

IV. PHASE DIAGRAM BY THE CAVITY METHOD

Some of the information obtained in the previous section
are now compared with the results of a statistical mechanics
analysis �37,38� by means of the zero-temperature cavity
method �39�. At the level of graph ensembles, there is a sharp
difference between random regular graphs and ER random
graphs. In random regular graphs, all nodes behave in the
same way, thus, the cavity equations simplify considerably

leading to simple recursion equations for a small set of prob-
ability marginals. The case of ER random graphs is more
involved as the presence of various degree values implies the
use of distributions instead of simple cavity fields already at
the RS level. In both classes the solutions of the replica
symmetric cavity equations are not always stable �at least for
some values of the average degree�. For random regular
graphs we consider the 1RSB scenario to see how glassy
phases �if any� change the RS picture close to minimum and
maximum densities.

However, cavity equations can be applied to study single
instances as well �40�, leading to message-passing recursive
algorithms able to find efficiently maximal independent sets
in a wide range of density values on very general kinds of
graphs �see Sec. V C�.

A. Replica symmetric results: Belief propagation

The problem of finding a maximal independent set of den-
sity � can be mapped on the problem of finding the ground
state of a particular kind of spin model or lattice gas on the
same graph. On each vertex i we define a binary variable
�i= �0,1�. For a configuration �� = ��i � i=1, . . . ,N� to be in
the ground state �i.e., a mIS�, each variable i has to satisfy a
set of ki+1 constraints involving neighboring variables.
There are ki constraints Iij on the edges emerging from i,
each one involving two neighboring variables i and j, and
one further constraint Ii on the whole neighborhood of i. For
two neighboring nodes i and j, the edge constraint Iij =1 if
and only if �i=0∨� j =0 �packinglike constraint�; while the
neighborhood constraint Ii=1 if and only if �i+� j��i� j �0
�coveringlike constraint�. Here �i represents the set of neigh-
bors of node i.

The zero temperature partition function corresponding to
this constraint-satisfaction problem reads

Z�	� = �
��

	
i

Ii��i,��i� 	
�i,j��E

Iij��i,� j�exp
− 	�
i

�i� ,

�2�

in which ��i= �� j � j��i� and 	 is a chemical potential gov-
erning the number of occupied vertices. Assuming that the
graph is a tree, we can write exact equations for the prob-
ability of having configuration ��i , ��k �k��i \ j��, on node i
and its neighbors except for j, when constraints Ij, Ii and Iij
are absent �cavity graph�. We denote this probability

i→j��i ,�i→j� and write


i→j��i,�i→j� =
1

Zi→j
�

�k→i

	
k��i\j

IkIik
k→i��k,�k→i�e−	�i,

�3�

where �i→j = ��k �k��i \ j� and Zi→j is a normalization con-
stant. The equations, called belief propagation �BP� equa-
tions �41�, are exact on tree graphs, but can be used on gen-
eral graphs to find an estimate of the above marginals. They
give a good approximation if the graph is locally treelike,
i.e., there are only large loops whose length diverges with the
system’s size, as for random graphs of finite average degree.
Beside this, in writing the BP equations we assume that only
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one Gibbs state describes the system, i.e., we have replica
symmetry.

For the present problem, the BP equations simplify con-
siderably if we write them in terms of variables R�i,m

i→j

�
i→j��i ,m� in which m is the number of occupied neigh-
boring nodes of i �in the cavity graph�. Looking at the BP
equations one realizes that a configuration satisfying all con-
straints �i.e., solution of the BP equations� contains only
three kinds of these variables: �1� the probability that a node
is occupied in the cavity graph and all its neighbors are
empty r1

i→j =R1,0
i→j, �2� the probability that a node is empty as

well as all its neighbors r00
i→j =R0,0

i→j, and �3� the probability
that a node is empty but not all neighbors are empty r0

i→j

=�m=1
ki−1R0,m

i→j. In terms of these variables, the RS cavity equa-
tions become

r1
i→j � e−	 	

k��i\j
�1 − r1

k→i� ,

r0
i→j � 	

k��i\j
�1 − r00

k→i� − 	
k��i\j

r0
k→i

r00
i→j � 	

k��i\j
r0

k→i. �4�

With the correct normalization factor, these equations can be
solved by iteration on a given graph.

1. Random regular graphs

In random regular graphs with degree K, the equations do
not depend on the edge index i→ j at their fixed point, and
we have

r1 =
e−	�1 − r1�K−1

e−	�1 − r1�K−1 + �1 − r00�K−1 ,

r0 =
�1 − r00�K−1 − r0

K−1

e−	�1 − r1�K−1 + �1 − r00�K−1 ,

r00 =
r0

K−1

e−	�1 − r1�K−1 + �1 − r00�K−1 . �5�

The zero temperature partition function counts the number of
ground states of the system, i.e., the number of mIS, weight-
ing each occupied vertex with a factor e−	. The correspond-
ing free energy is defined as

e−	Nf�	� = Z = d�eNs���−	N�, �6�

in which we have decomposed the sum over mIS configura-
tions in surfaces at the same density of occupied sites �,
isolating the entropic contribution at each density value s���.
The knowledge of the free-energy f�	� allows to compute by
Legendre transform the behavior s��� of the entropy of mIS
as a function of the density of occupied vertices, that can be
compared with the results obtained by means of the annealed
calculation �Appendix A�. In the Bethe approximation, the
free energy can be computed as

	f =
1

N
�

i

	�f i −
1

N
�

�i,j��E
	�f ij , �7�

where

e−	�f i = �
�i,��i,�k��j\i

Ii 	
j��i


 j→i�� j,� j→i� �8�

e−	�f ij = �
�i,�j,��i\j,��j\i

Iij
i→j��i,�i→j�
 j→i�� j,� j→i� �9�

and in terms of the variables �r1 ,r0 ,r00�

e−	�f i = e−	�1 − r1�K + �1 − r00�K − r0
K �10�

e−	�f ij = r0
2 + 2r1�r0 + r00� . �11�

Moreover, in these variables, the density is easily written as

� =
e−	�1 − r1�K

e−	�1 − r1�K + �1 − r00�K − r0
K . �12�

Once we have solved the BP Eqs. �5�, we have � and f�	�
and the Legendre transform 	f�	�=−max��s���−	��, so we
can compute the entropy s��� by inverting it.

We have solved the BP equations numerically and plotted
the corresponding s vs. � diagrams in Fig. 3 for several val-
ues of the degree K=2, 3, 4, and 5.

At this point one should check the stability of BP equa-
tions at the fixed point. This stability is important to have
convergence and find reliable values for the marginals. No-
tice that BP stability is not a sufficient condition for the
problem to be in the RS phase, but a necessary one, i.e., if
BP are unstable, then we can conclude that RS assumption is
not correct anymore �33�. In general, two kinds of instabili-
ties can occur: a ferromagnetic instability �or modulation in-
stability�, associated with the divergence of the linear sus-
ceptibility and signaling the presence of a continuous
transition toward an ordered state; and a spin-glass instabil-
ity, associated with the divergence of the spin-glass suscep-
tibility and signaling the existence of RSB and possibly a
continuous spin-glass transition. In the present case, since we
are dealing with models defined on random graphs, the first
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FIG. 3. �Color online� BP entropy s��� of maximal independent
sets for random regular graphs with different values of K=2, 3, 4,
and 5 �curves from right to left�.
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kind of instability is excluded and we focus on the latter one.
The details of stability analysis are reported in Appendix

D. Called �M the maximum eigenvalue of the stability matrix
M, the stability condition is ��K−1��M

2 �1. In random
regular graphs, this happens as long as ���s2

BP. For larger
densities the BP equations do not converge even if we use a
linear combination of old and new messages to stabilize the
dynamics �like in learning processes�. On the other side, for
���s1

BP we have �1 but for K�Km=6 the algorithm con-
verges only if we stabilize it. The numerical values for dif-
ferent K are given in Table II.

In Fig. 4 we plotted again the curves of the RS entropy as
function of � for various degree values, now showing only
the region of the curve in which the RS solutions are stable.
It is worthy noting that for K�Km=6 BP equations converge
very easily in the low-density region while they are always
unstable for K�KM =2 in the high-density region.

2. Erdös-Rényi random graphs

Consider the ensemble of ER random graphs with degree
distribution pk and average degree z. In this case, the prob-
abilities r� ��r1 ,r0 ,r00� depend on edge index �i→ j�,

r1
i→j � e−	 	

k��i\j
�1 − r1

k→i� ,

r0
i→j � 	

k��i\j
�1 − r00

k→i� − 	
k��i\j

r0
k→i,

r00
i→j � 	

k��i\j
r0

k→i. �13�

One can run the above equations on random graphs to obtain
the BP entropy. Figure 5 displays the results that we obtain in
this way. There are some regions in which the equations do
not converge even if we use a linear combination of new and
old messages to stabilize the equations.

Let us denote the above BP equations by BP. In a general
random graph messages r� change from one directed edge
�i→ j� to another. In a large graph �or equivalently in the

ensemble of random graphs� the statistics of these fluctua-
tions is described by P�r�� which satisfies

P�r�� = �
k

qk 	
l=1

k

dP�r�l���r� − BP� , �14�

where qk= �k+1�pk+1 /z is the excess degree distribution.
To obtain the entropy, we have to solve the above equa-

tion by means of population dynamics �see Appendix E�.
This is a well-known method to solve equations involving
probability distributions �39�. Having P�r��, we compute the
free energy in the Bethe approximations 	f =	��f i�
− K

2 	��f ij�, with

− 	��f i� = �
k

pk 	
l=1

k

dP�r�l�ln�e−		
l

�1 − r1
l � + 	

l

�1 − r00
l �

− 	
l

r0
l � ,

− 	��f ij� = dP�r��dP�r���ln�r0r0� + r1�r0� + r00� �

+ r1��r0 + r00�� ,

and finally invert the Legendre transform. The density of
covered nodes is given by

� = �
k

pk 	
l=1

k

dP�r�l�

e−		
l=1

k

�1 − r1
l �

e−		
l=1

k

�1 − r1
l � + 	

l=1

k

�1 − r00
l � − 	

l=1

k

r0
l

.

�15�

Notice that in this way we obtain the entropy in the RS
approximation for infinite random graphs. The numerical
values are already in good agreement with those obtained on
single samples of size N=104. It should be mentioned that in
the population dynamics algorithm we do not have the con-
vergence problem, we could always stabilize the dynamics
and find the entropy in the whole region of densities. Figure
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FIG. 4. �Color online� RS entropy s��� for random regular
graphs of various degree K=3–10 �curves from right to left� and
size N=104. The curves are plotted only in the intervals of density
in which BP equations converge.
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FIG. 5. �Color online� Entropy of random ER graphs of average
degree z=3–10 �curves from right to left� and size N=104 in the
range of densities, in which BP equations converge.
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6 displays the results of population dynamics for the entropy.
The lower and upper bounds in Table I have been obtained
with population dynamics.

B. Replica symmetry breaking

Here, we go beyond the RS ansatz and explore the possi-
bility that maximal independent sets organize in clusters or
in even more complex structures �37�. The instability of BP
equations that we observed in the previous section could be a
clue of a transition into a 1RSB or full RSB �fRSB� phase.
This would be reasonable at least for the high density region
because the maximum mIS �MIS� coincides with the mini-
mum vertex covering for the conjugate problem, that is pre-
sumed to present RSB of order higher than 1 �possibly
fRSB� �30,31,42�. In order to verify these ideas, we consider
1RSB solutions of the mIS problem.

Having a 1RSB phase means that the solution space is
composed of well separated �distances of order N� clusters of
solutions. Each cluster has its own free energy density fc and
there are an exponential number of clusters of given free
energy eN��f� where ��f� is called complexity. The physics of
this phase is described by the following generalized partition
function:

Z = e−m	N� = �
c

e−m	fc = dfeN���f�−m	f�. �16�

Here m is the Parisi parameter that describes 1RSB phase.
Having the distribution of cavity fields P�r�i→j� among the
clusters we write the following expression for � in the Bethe
approximation �43�:

yN� = �
i

y��i − �
�i,j��E

y��ij , �17�

where y=m	 and

e−y��i = 	
j�i

dP�r� j→i�e−y�f i,

e−y��ij = dP�r�i→j�dP�r� j→i�e−y�f ij . �18�

The cavity fields distribution satisfies

P�r�i→j� � 	
k��i\j

dP�r�k→i�e−y�f i→j��r�i→j − BP� , �19�

where we have assumed that the graph is regular and so
P�r�i→j� does not depend on the edge label. We have also
introduced the cavity free energy change

e−	�f i→j = e−	�1 − r1�K−1 + �1 − r00�K−1. �20�

From the generalized free-energy � we can obtain the com-
plexity by a Legendre transform

��f� = − y� + yf , f =
�y�

�y
. �21�

A simplifying approach would be that of working in the limit
of survey propagation �SP� �40�, assuming infinite chemical
potential 	→ �� and zero Parisi parameter m→0, with fi-
nite ratio y=m	. This means that we focus only on the most
numerous clusters �m=0� composed of frozen solutions �	
→ ���. However, this is not consistent with the spatial or-
ganization of mISs emerging from Sec. III. Indeed, we know
that variables are locally but not globally frozen, and the
absence of globally frozen variables means that if there is
any cluster of solutions it contains only unfrozen variables
�44�. Therefore, we do not expect to find any physically rel-
evant result by means of survey propagation. In Appendix C,
we report a detailed analysis showing that SP complexity is
indeed unphysical.

Let us relax the m=0 restriction to see if there is any other
type of clusters. Notice that when m is finite the chemical
potential can also be finite and cannot have frozen variables
in the clusters �i.e., variables assuming always the same
value for all solutions in one cluster�. A nonzero complexity
in this case would imply the presence of unfrozen clusters.

For a value of m the relevant clusters are those that maxi-
mize ��f�−m	f . The parameter m itself is chosen to maxi-
mize the free-energy ��m�. As long as we are in the RS
phase, m�=1 clusters are the thermodynamically relevant
ones with zero complexity. A dynamical transition could oc-
cur if the complexity of these clusters ��m=1� takes a non-
zero value. But a real thermodynamic transition �1RSB� oc-
curs when the relevant clusters have again a zero complexity
with m��1.

Here, we resort again to population dynamics �see Appen-
dix E� to solve Eq. �19� and to find the complexity as de-
scribed above. For simplicity we only consider the case of
random regular graphs with K=3. We have used a population
of size Np=105 to represent the distributions. To get the non-
trivial fixed point of the dynamics we start from completely
polarized messages �45� and update the population for T
=104 iterations to reach the equilibrium. In each iteration all
members of the population are updated in a random sequen-
tial way. After this equilibration stage we take M =103 inde-
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FIG. 6. �Color online� Entropy of random ER graphs of average
degree z=3–10 �curves from right to left� obtained with population
dynamics.
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pendent samples of the population to compute the free en-
ergy � and other interesting quantities such as the
complexity.

In Figs. 7 and 8 we report the m=1 complexity obtained
with population dynamics and compare it with the RS en-
tropy in the extreme density regions.

There is a small interval in the low-density region, in
which ��m=1� is positive, signaling a dynamical transition
in that region. Since the RS solution is stable in this region,
total entropy will be equal to the RS one and the minimum
density is the point that m=1 complexity vanishes. Despite
the large equilibration time we have still large statistical er-
rors maybe due to the instability of this solution. We ob-
served that the errors improve very slowly by increasing size
of population or number of samplings, indicating a poor con-
vergence of this solution.

In the high-density region we observe a completely dif-
ferent behavior where ��m=1� is always nonpositive. This
behavior is also observed in other problems such as 3-SAT
�46�, and it means that in the high-density region dynamical
and condensation transitions coincide �47�. Below the transi-
tion, complexity is zero and we are in the RS phase with
m�=1; for larger densities, ��m=1� becomes negative and
we have a condensation transition where m��1. The entropy
computed at this value of m gives the 1RSB prediction of the

entropy. The maximum density that we obtain in this way is
displayed in Fig. 8. We recall that a maximum mIS is
complement of a minimum vertex covering and we already
know that these coverings have a nonzero entropy �30,42�.
We found qualitatively the same behavior for random regular
graphs of degree K=4,5.

C. Distance from a solution

In Sec. III, we have proved that in a general graph of size
N a solution �mIS� is at a finite distance O��k2�� from a
number of O�N� other solutions �mIS�. The mathematical
proof is based on the idea that by flipping a single variable in
a mIS configuration we generate a rearrangement process
that propagates at most to the second neighbors of the flipped
variable. Here, we substantiate this result by means of a sta-
tistical mechanics calculation.

In the large deviations cavity formalism, it is possible to
compute the number of solutions of a CSP at a distance d
from a given one �� � using the weight enumerator function
�43,48,49�

Z = e−Nxf�
= �

��
	

i

Ii 	
�i,j��E

Iije
−x�i��i − �i

��2
= 

d

eN�s��d�−xd�,

�22�

where s�d� is the entropy of solutions at a distance d
= 1

N�i��i−�i
��2 from �� �. Averaging over all solutions �mIS�

Z̄ = e−Nxf =
1

Z0
�
�� �

�
��

	
i

Ii 	
�i,j��E

Iij

�exp�− x�
i

��i − �i
��2 − 	�

i

�i
��

= 
d

eN�s�d�−xd�, �23�

where we added a chemical potential 	 to keep track of the
contribution of mISs with different density. Notice that here
we are using the annealed approximation which works if
there are no strong fluctuations in Z. We find f in the Bethe
approximation in terms of cavity fields �now weighted with

the term e−x��i − �i
��2

� and extract the expression s�d� of the
entropy of solutions at an Hamming distance dN from an-
other by means of Legendre transform,

− xf = max
d

�s�d� − xd�, d = f + x
� f

�x
. �24�

For the mIS problem, the cavity equations have now to take
into account the current value of the variable �i and that in
the reference configuration �i

�,


i→j��i,�i→j��i
�� � e−x��i − �i

��2−	�i
�

� �
�k→i

	
k��i\j

IkIik
k→i��k,�k→i��k
�� .

�25�

Knowing f and d we can numerically compute s�d�, as re-
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FIG. 7. �Color online� Comparing RS entropy �dashed line� and
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ported in Fig. 9 for the case K=3. The plot shows that at
typical densities there is always an extensive number of mISs
at any finite distance d from another mIS. The same holds for
nontypical values of the density �obtained with 	�0�, even
if in this case we can push our analyses only up to those
values at which BP converges. From the figure, we observe
that a low density solution is closer to other solutions than a
high density one whereas typical solutions lie in between.

V. NUMERICAL SIMULATIONS

In this section, we discuss different classes of numerical
simulations that can be used to investigate the properties of
maximal independent sets on random graphs. We first con-
sider some greedy algorithms, that generate a mIS in a time
that scales linearly with the system’s size. These algorithms
work in a very limited range of density values, though they
are of interest for their application to the study of the best-
response dynamics in strategic network games �6,7�.

A more effective way to explore nontypical regions of the
phase diagram, at low and high densities, is by means of
Monte Carlo simulations based on the lattice gas representa-
tion. Monte Carlo methods are also useful to obtain an esti-
mate of the entropy of maximal independent sets by thermo-
dynamic integration. Other interesting results can be
obtained by means of a particular kind of zero-temperature
Monte Carlo simulation, that allows transitions from a mIS
directly to another and have been conceived appositely for
sampling the space of maximal-independent sets.

Finally, we compare the results of Monte Carlo simula-
tions with those obtained by a completely different tech-
nique, the numerical decimation method based on belief-
propagation equations �BP decimation �BPD��. Both Monte
Carlo and BP decimation are effective in sampling mISs in
the regions of low and high-density values, but they are not
able to reach the extreme density limits predicted by theoret-
ical calculations �RS bounds�.

Note that the use of a simulated annealing scheme makes
the computational time of all MC simulations much longer

than that of BP-based algorithms. Therefore, whereas in the
case of BP decimation we present results for systems of N
=104 nodes, all MC results will be restricted to smaller size
�N=103� in order to have a reasonable statistics in particular
at nontypical densities.

A. Greedy algorithms and best-response dynamics

The simplest algorithm to generate maximal independent
sets is the Gazmuri’s algorithm �50�,

�1� Start assuming all nodes of the graph to be 0.
�2� At each time step select a node i uniformly at random,

assign 1 to the node i and remove it from the graph together
with all its neighbors �that are 0 valued� and all the edges
departing from these nodes.

�3� Repeat point 1. until the graph is empty.
The configuration of the removed nodes defines a maxi-

mal independent set for the original graph. The Gazmuri’s
algorithm works in linear time on every graph, but does not
allow any control on the density of covered nodes; therefore
one could expect to obtain on average solutions of typical
density, close to the maximum of the entropic curve s��� in
Figs. 4 and 5.

ER random graphs are particularly simple to study theo-
retically. We assume that the degree distribution remains
poissonian during nodes removal, but with a time-dependent
average degree. This is reasonably correct if the random re-
moval is an uncorrelated process.

The dynamics of the Gazmuri’s algorithm can be ex-
pressed in terms of differential equations for concentrations,
using a standard mean-field approach recently formalized in
probability theory by Wormald �51�. The initial number of
nodes in the original graph is N, but at each step of the
process one node and all its neighbors are removed. If we
call c�T� the average degree of a node in the graph after T
temporal steps, the expected variation of the number of
nodes in the graph is E�N�T+1�−N�T��=−1−c�T�. Writing
N�T�=Nn�T /N�, we get the concentration law ṅ�t�
=−c�t�−1. Note that the average degree evolves as c�t�
=c�0�n�t� with c�0�=z. The two equations give c�0�n�t�
= �c�0�+1�e−c�0�t−1, that vanishes at tf =log�c�0�+1� /c�0�.
As we cover only one node per unit of time, ��tf�= tf. The
Gazmuri’s algorithm on ER random graphs of average de-
gree z produces mIS of typical density �gaz���tf�
=log�z+1� /z. In Fig. 10 we show that this result is in good
agreement with simulations done averaging over 100 ER
graphs of size N=103 and corresponds approximately to the
typical density, even if it systematically overestimates the
values maximizing the RS entropy �see also Fig. 12�.

The probability of obtaining a nontypical mIS with the
Gazmuri’s algorithm decays exponentially such as eN��

where �� is the deviation of the density of covered nodes
with respect to the typical density �gaz. In principle, repeat-
ing an exponential number of times the Gazmuri’s algorithm,
we have nonzero probability to find rare trajectories in which
the final density of covered nodes may differ considerably
from the typical one. These finite size effects can be quanti-
fied using the following path-integral approach �3,52�.

The evolution of the algorithm is fully specified by the
evolution of the concentration of covered nodes x�t�, the con-
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K=3: Max density
typical
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FIG. 9. �Color online� Comparing analytic and numerical results
for s�d� in random regular graphs of degree K=3 and size N=104.
The points have been obtained by computing s�d� for a given solu-
tion using the cavity method. Max density �squares� and Min den-
sity �triangles� refer to the best extreme solutions that we obtain.
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centration of the number of untouched nodes n�t� or equiva-
lently the evolution of the average degree c�t�. The probabil-
ity that in the T+1th temporal step of the algorithm the
number of covered nodes and untouched nodes changes, re-
spectively, of �X and �N is

PT
T+1��X,�N� = e−c�t����X,1�

k=0

�

��N,−k−1
c�t�k

k! � , �26�

where we have used the Poisson degree distribution pk

= c�t�k

k! e−c�t�. In the Fourier space

P̂T
T+1���t�,	�t�� = �

�X=−�

�

�
�N=−�

�

PT
T+1��X,�N�e−i	�t��N−i��t��X,

�27�

=exp�− c�t� + i	�t� − i��t� + c�t�ei	�t�� . �28�

Then considering N�T consecutive steps and neglecting sub-
leading terms in �t we get

PT
T+�T��X,�N� = 

−�

� d��t�
2�


−�

� d	�t�
2�

ei	�t��N+i��t��X

�exp�N�t�− c�t� + i	�t� − i��t�

+ c�t�ei	�t��� , �29�

where one should then use �X�Nẋ�t��t and �N
�Nċ�t��t /c�0�. The probability P�xf �c� of a trajectory
�x�t� ,c�t�� given the initial and final conditions �x�0�
=0,c�0�=z� and �x�tf�=xf = tf ,c�tf�=0� is

P�x�c� = 	
t�1


−�

� d��t�
2�


−�

� d	�t�
2�


0

1

dx�t�
0

c

dc�t�

�exp�− N�tL�ẋ�t�, ċ�t�,x�t�,c�t�,��t�,	�t��� ,

�30�

with Lagrangian

L�ẋ, ċ,x,c,�,	� = c�t� − i	�t� + i��t� − cei	�t� − i��t�ẋ�t�

− i	�t�
ċ

z
. �31�

The Euler-Lagrange equations are

ẋ = 1,

�̇ = 0,

ċ = − z�1 + cei	� ,

i	̇ = z�ei	 − 1� . �32�

Solving the equations, the probability of rare events becomes
P�x �c��exp�NI�x ,c�� with the large deviation functional
given by the saddle-point action I�x ,c�=�0

tfdtL�x ,c�. We
have solved numerically the Eqs. �32� and computed the
large deviation functional I�� ,z� for ER graphs with differ-
ent values of the average degree z. In Fig. 11�A� we have
plotted the behavior of the large deviation functional for z
=4 as a function of the density � of covered nodes in the mIS
generated by the algorithm. Its theoretical behavior is com-
pared to the results of simulations of Gazmuri’s algorithm on
a ER graph with N=100, 200, 500, and 1000 nodes and same
average degree K=4. The results are in perfect agreement.

In the case of random regular graphs, it is possible to
obtain an analytical estimate of the behavior of the

FIG. 10. �Color online� Average density of coverings � �circles�
vs average degree K ,z in the mISs obtained with Gazmuri’s algo-
rithm on ER random graphs �open symbols� and random regular
graphs �full symbols�. Data points were obtained averaging over
100 graphs of N=103 nodes. The dashed lines are the theoretical
predictions obtained solving the corresponding differential equa-
tions for the concentration of covered nodes. The typical behavior
of greedy algorithms is compared with typical results of Monte
Carlo simulations on the same graphs �diamonds�.

FIG. 11. �Color online� Rare events in the Gazmuri algorithm
for ER random graphs �left� and random regular graphs �right� with
z ,K=4. The theoretical behavior of the large deviation functional
I��� �dashed line� is compared with results of simulations for
graphs with N=100 �circles�, 200 �squares�, 500 �triangles�, and
1000 �crosses� nodes. Data points are obtained computing the prob-
ability P��� of observing mIS of density � out of 105 trials. Plotting
the rescaled function log P��� /N, we find perfect agreement with
the theoretical values for I���.
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Gazmuri’s algorithm using an approach based on random
pairing processes �53�. A random pairing process is used to
generate random graphs with a given degree distribution and
consists in taking a number of copies of the same node equal
to its degree and in matching these copies randomly with
copies of other nodes until the network is formed and no
copy remains unmatched. The evolution of mIS can be de-
scribed using a random pairing process. We consider two
quantities: the number of covered nodes �i.e., that is equal to
the time T� and the number of nodes that still have not been
touched by the algorithm, i.e., Y�T�. All copies of the nodes
are initially untouched: at each step, we select randomly an
untouched copy and cover her together with all her siblings.
The K other copies matched with these ones are removed
�exposed in �53��. The result is that at each step the number
of untouched copies decreases of 2K, but some of the re-
maining copies are siblings of exposed ones. This is impor-
tant in order to compute the total variation of the number of
untouched nodes during the process. In fact, the probability
that the pairing of a selected copy is also untouched is given
by the number of untouched copy KY�T� divided by the total
number of nonexposed copies KN−2KT. This random pair-
ing algorithm is repeated until there are no untouched nodes
anymore. As we are considering the pairing on the fly, on an
annealed network structure, we can neglect the evolution of
the degree distribution and write an equation for Y�t�. Its
variation in a single time step is E�Y�T+1�−Y�T��=−1
−Y�t� / �N−2T�. The dynamics of y�t�=Y�T /N� /N is gov-
erned by the differential equation

dy�t�
dt

= − 1 − K
y�t�

1 − 2t
�33�

that gives y�t�= �K−1��1−2t�K/2−�1−2t�
K−2 . The density of covered

nodes is given by the time tf at which y�tf�=0, i.e., tf =
1
2

− 1
2 �K−1�2/�2−K�. Figure 10 �full symbols� compares the the-

oretical prediction for various values of K with the average
density observed in the simulation of the Gazmuri’s algo-
rithm on random regular graphs of size N=1000.

In a small network, a single realization of the Gazmuri’s
algorithm can deviate considerably from the average behav-
ior, even if the degree distribution is initially regular. The
fluctuations are now associated with the number of possible
untouched nodes exposed by the pairing process in a time
step. This can be easily quantified applying the path-integral
method to obtain the large deviation functional. The prob-
ability that in the T+1th temporal step of the algorithm the
number of untouched nodes changes of �Y is

PT
T+1��Y� = �

n=0

K

��Y,−1−n
K

n
�
 Y�T�

N − 2T
�n
1 −

Y�T�
N − 2T

�K−n

.

�34�

In Fourier space it becomes

P̂T
T+1���T�� = �

�Y=−�

+�

�
n=0

K

��Y,−1−n
K

n
�

�� Y�T�
N − 2T

�n�1 −
Y�T�

N − 2T
�K−n

e−i��T��Y �35�

=ei��T��1 +
Y�T�

N − 2T
�ei��T� − 1��K

. �36�

The corresponding Lagrangian in the continuum limit is

L�ẏ,y,�� = − i��t� − i��t�ẏ�t� − K log�1 +
y�t�

1 − 2t
�ei��t�−1��

�37�

Imposing the stationarity, we find the saddle-point equations

i�̇ =
K�ei� − 1�

1 − 2t + y�ei� − 1�
, �38�

ẏ = − 1 −
Kyei�

1 − 2t + y�ei� − 1�
. �39�

Solving the equations and computing the large deviation
functional I�� ,K� we find the behavior displayed in Fig.
11�B� �dashed line�, in which we also plotted the results of
the numerical simulation of the Gazmuri’s algorithm on ran-
dom regular graphs of small sizes. As for ER graphs, the
statistics of rare events is extremely well reproduced by our
theoretical calculations.

The dynamics of Gazmuri’s algorithm is relevant for eco-
nomic applications, because it reproduces the main features
of the best-response dynamics in Best-Shot strategic games
�7�. In the BR dynamics, all variables are initially assigned to
be 0 or 1 with a given probability pin. At each time step a
node i is randomly selected: if at least one of the neighbors
of i is 1, then the node i is put to 0, otherwise if all neighbors
are 0, the node is put to 1. This type of dynamics has been
recently studied by Lopez-Pintado �19� on uncorrelated ran-
dom graphs by means of a dynamical mean-field approach.
In random regular graphs of degree K, the density of covered
nodes �contributors� evolves following the equations

d��t�
dt

= − ��t��1 − �1 − ��t��K� + �1 − ��t���1 − ��t��K

�40�

and converges rapidly to the fixed point �= �1−��K. This
solution looks different from that obtained by means of the
pairing process; however, the actual process is not very dif-
ferent. In fact, for the nature of the strategic games associ-
ated with the mIS problem, a single sweep of BR over the
system is sufficient to reach a Nash Equilibrium �i.e., to sat-
isfy all variables, without generating contradictions�. There-
fore, best-response dynamics behaves like the Gazmuri’s al-
gorithm, apart from choice of the initial conditions that could
introduce a bias in the density values. Simulating BR dynam-
ics with different initial bias pin, we verified that the final
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density is almost independent of pin and agrees reasonably
well with the results of Gazmuri’s algorithm �not shown�.

B. Monte Carlo methods applied to mIS problem

1. Different types of simulated annealing

Monte Carlo algorithms for finding maximal independent
sets are based on a simulated annealing scheme for the aux-
iliary binary spin model, in which the energy E of the system
corresponds to the number of unsatisfied local constraints
�that we have already defined in Sec. IV� �54�. Starting from
the high-temperature region �i.e., random configurations of
0s and 1s�, we slowly decrease the temperature to zero, with
the following Metropolis rule: �1� pick up a node randomly
and flip its binary variable; �2� if the energy is decreasing,
then accept the move with probability 1, otherwise accept the
move with a probability e−��E.

In the absence of a constraint on the density of covered
nodes, the algorithm always finds a solution of typical den-
sity. Figure 10 �diamondlike symbols� shows the dependence
of the average density of covered nodes � for the mISs ob-
tained with this thermal Monte Carlo as a function of the
degree z ,K in both random regular graphs and ER random
graphs. It is interesting to see that maximal independent sets
found with standard simulated annealing have different sta-
tistical properties compared to the solutions of greedy algo-
rithms. Checking on the entropy curves obtained with BP
equations, we see that MC simulations find the thermody-
namically relevant solutions that, in the absence of chemical
potential �	=0� are those of typical density that corresponds
to the entropy maximum. At a difference with Monte Carlo,
the Gazmuri’s algorithm does not find solutions of typical
density but systematically overestimates it, finding solutions
of slightly larger density of coverings. This phenomenon
could be due to the nonequilibrium nature of the process and
deserves further investigation.

In order to find solutions in the region of nontypical den-
sities, we consider two main strategies: �i� a MC algorithm
working at fixed number of covered nodes �fMC�; �ii� a MC
algorithm fixing the density by means of a chemical potential
�grand-canonical MC �gMC��.

In the first case, it is possible to use the following nonlo-
cal Kawasakilike move: �1� pick up two nodes at random, if
they are not both 0s or 1s, exchange them and compute the
variation of energy �number of violated constraints�. �2� Ac-
cept the move with usual Metropolis criterion depending on
the variation of the energy �E and on the inverse tempera-
ture �. Cooling the system from high temperature to zero
allows to find mIS at a given density of 1s. In our simula-
tions performed on graphs of N=103 nodes, we are able to
find mISs at all densities between a lower limit � fMC

lower and an
upper one � fMC

upper �see Table III�. In Fig. 12, these values are
reported �open triangles� on the RS entropy curve for ER
�left� and random regular graphs �right�. Note that they are
quite far from the minimum and maximum predicted by cav-
ity methods.

An alternative approach consists in using a grand-
canonical lattice gas formulation, or in terms of spins by the
addition of an external chemical potential coupled with the
density �, i.e., changing the energy E→E+	�i�i. The glo-
bal optimization of the energy now mixes the attempt to
minimize the number of violated constraints with that of

TABLE III. Summary of the minimum and maximum values of density at which we find mISs on random regular graphs with different
algorithms: BP decimation �min

BPD and �max
BPD; fixed-density Monte Carlo �min

fMC and �max
fMC; grand-canonical Monte Carlo �min

gMC and �min
gMC;

rearrangement Monte Carlo �min
rMC and �min

rMC. BP results are obtained on graphs of size N=104 whereas Monte Carlo results on graphs of size
N=103. In the cases of fMC and gMC, we have chosen the values at which at least half of the runs were successful in finding a mIS.

K �min
BP �min

BPD �min
rMC �min

gMC �min
fMC �max

fMC �max
gMC �max

rMC �max
BPD �max

BP

3 0.264 0.267 0.269 0.275 0.271 0.449 0.449 0.449 0.449 0.458

4 0.223 0.228 0.230 0.235 0.232 0.408 0.408 0.410 0.408 0.419

5 0.196 0.201 0.203 0.206 0.206 0.377 0.377 0.379 0.375 0.387

6 0.175 0.181 0.185 0.188 0.184 0.349 0.349 0.349 0.348 0.360

7 0.159 0.165 0.168 0.172 0.169 0.327 0.327 0.328 0.325 0.338

8 0.146 0.153 0.156 0.158 0.158 0.308 0.310 0.308 0.306 0.319

9 0.136 0.143 0.145 0.148 0.146 0.294 0.293 0.294 0.289 0.301

10 0.127 0.134 0.138 0.140 0.138 0.278 0.278 0.278 0.274 0.287
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FIG. 12. �Color online� Entropy curves s��� obtained with BP
on both ER �left� and random regular graphs �right�. On the curves
we report the minimum and maximum densities at which we can
find mIS using different algorithms: the Gazmuri’s algorithm �black
plus symbols�, standard Monte Carlo �red crosses�, rearrangement
Monte Carlo �blue circles�, Monte Carlo with chemical potential
fixing the average � �red squares�, fixed density Monte Carlo �green
triangles�, BP decimation �black diamonds�. Data are obtained for
graphs with N=103 nodes and average degree z ,K=4.
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minimizing �or maximizing depending on the sign of 	� the
number of covered nodes and requires a careful fine tuning
of parameters in order to get zero violated constraints at the
expected density of covered nodes. A better choice is that of
modifying the energy as E→E+	��i�i−N���, with �� being
the desired density of covered nodes. Apart from the details
of implementation, the Monte Carlo dynamics follows the
usual thermal criterion: �1� pick up a node randomly and flip
its binary variable; �2� if the energy is decreasing, then ac-
cept the move with probability 1, otherwise accept the move
with a probability e−��E. By fixing 	�0 we just tune the
speed of the convergence of the density of 1s to the desired
value �=�� during the cooling process �increasing values of
��.

The fact that the number of 1s is fixed only on average
does not seem to help the system to accommodate the con-
figurations more easily than in the fMC case. The results are
comparable and, in the low-density region, fMC seems to
perform better �see Fig. 12 and Table III�.

2. Entropy by thermodynamic integration

Monte Carlo algorithms can be used also to give an esti-
mate of the entropy of solutions by means of the well-known
thermodynamic integration method �55�. This method, that is
commonly used to compute the number of metastable states
or blocked configurations in granular systems �56�, can be
applied to the present problem in a very natural way.

For a system in the canonical ensemble, we can express
the specific heat C as a function of the internal energy E, by
C���=−�2 �E

�� , and as a function of the entropy S, by C���
=−� �S

�� . Energy and entropy are, therefore, related by
dS���=� �E

��d�. Since the energy can be computed numeri-
cally using a Monte Carlo algorithm, it is convenient to in-
tegrate by parts and consider

s��� − s�� = 0� = �e��� − 
0

�

e����d��, �41�

where we have used the rescaled quantities s=S /N and e
=E /N. Equation �41� provides the zero-temperature entropy
s��� once we know e��� and the infinite temperature entropy
s�0�. In our case, the calculation gives an estimate of e���
and so the entropy of maximal-independent sets on a given
graph. Indeed, using Monte Carlo we cannot find very accu-
rate values for the average energy especially if there exist a
phase transition. Even when there is no phase transition tak-
ing place in the integration range, there are other sources of
inaccuracy. More precisely, we can investigate a large but
finite interval �0,�max�, with �max��, thus, if the Monte
Carlo algorithm is not able to reach the ground states at some
�� �0,�max�, the numerical integration can only provide a
upper bound for the real entropy. In some situations, the two
errors may sum up, because replica symmetry breaking also
causes slowing down in Monte Carlo algorithms. This is the
main reason why we cannot push this method up to the ex-
treme values of density predicted by theoretical calculations.

We have used the gMC described before to compute the
entropy of solutions with non typical densities of covered
nodes. Note that the integration formula Eq. �41� is correct

also for the gMC algorithm because it corresponds to a ca-
nonical spin system with external field h�	 /�, that only
modifies the energetic contribution. At infinite temperature,
�=0, the entropy is log�2� because all states are accessible,
but for large values of the chemical potential 	, the system
rapidly concentrates around the desired density � as soon as
we increase �. The final entropy s��max� gives an estimate of
the entropy of mIS with a density � of covered nodes. In Fig.
13 we show the results of thermodynamic integration for
both ER and random regular graph with z ,K=4 and compare
them with the curves obtained with the cavity approach. We
have averaged the entropy values over 50 realizations of the
graphs and the standard deviation of the values are smaller
than data symbols. The points perfectly agree with the results
of the cavity approach showing that, in the range of validity
of BP equations they correctly predict the statistical proper-
ties of maximal independent sets.

3. Walking on the space of solutions by
“rearrangement Monte Carlo”

In Sec. III we have seen that it is possible to go from a
mIS to another one repeating a simple operation, that con-
sists in flipping a variable from 0 to 1 �or viceversa� and
rearranging the values of all neighbors iteratively until a new
mIS is found �see Fig. 2�. It was proved that the operation
always involves a finite number of variables, that makes it
possible to implement this process inside a Monte Carlo al-
gorithm. Moreover, proposition 3 ensures that, given two
mIS configurations, it is always possible to go from one to
the other and back with a sequence of operations of this kind.
The sequence of operations is finite whenever N is finite. A
Monte Carlo algorithm based on this operation is thus ex-
pected to be ergodic in the space of all maximal independent
sets �see Appendix B and �18��.

We define the following rearrangement Monte Carlo
�rMC� algorithm:

�1� The initial state is chosen finding a typical mIS by
best-response starting from a random configuration.

�2� We select a node randomly, we try to flip it and read-
just all neighboring nodes propagating the rearrangement un-
til all nodes are satisfied. In this way we generate another
mIS.

FIG. 13. �Color online� Entropy curves s��� obtained with BP
on both ER �left� and random regular graphs �right�. On the curves
we show the results of the thermodynamic integration by Monte
Carlo methods �squares and circles� averaged over at least 50 real-
izations of graphs with N=103 nodes.
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�3� We compute the variation �� of the density of covered
nodes between the two configurations, and accept the move
with probability 1 if the density decreases and probability
e−	�� if it increases.

�4� We repeat points �1�–�3� for a given number of itera-
tions, then we stop or change the chemical potential 	.

By performing a simulated annealing, in which 	 is
slowly increased �decreased� from 0, we find a chain of
maximal independent sets with decreasing �increasing� den-
sity of covered nodes. Having finite rearrangements means
that the variations in the number of covered nodes are finite
as well and the density � is almost constant. Therefore ap-
preciable density fluctuations only occur after O�N� rear-
rangements, that is a Monte Carlo step. When 	 is varied at
a sufficiently slow rate, the algorithm should be able to find
mISs at all densities at which they exist. Figure 14 shows
some data points taken every 100 MC steps. The density of
the mISs sampled by the algorithm is reported as function of
	. The curves seem to converge to values of the density that
are still far from the two theoretical bounds �obtained by the
cavity method� of the lower and upper SAT/UNSAT transi-
tions. At low and high-density values, the algorithm is not
able to find mIS beyond some threshold �rMC

lower��BP
lower

��min
lower and �rMC

upper��BP
upper��max

upper. Figure 12 reports these
two values �blue circles� in ER and random regular graphs
for average degree 4. A direct comparison with other com-
putational bounds shows that this algorithm outperforms the
other Monte Carlo methods in finding mISs at low and high
density of covered nodes. In particular, it is much faster than
the other MC algorithms and provides a large number of mIS
at different densities in a reasonably short time. The obtained
bounds are quite worse than those obtained by BP decima-
tion in the low density phase, but they are better in the high-
density phase �see Table III and Fig. 12�.

The exact value of the density, at which the algorithm
stops is only estimated by several numerical experiments and

further investigation is required in order to understand if
some heuristic optimization could allow to reach better re-
sults, even in the presence of replica symmetry breaking. In
fact, at very large chemical potential the algorithm becomes
sensitive to very small barriers, due to the flip of a finite
number of variables. Such barriers do not require a change in
density, but can trap the algorithm in local minima if the
algorithm is running at very large chemical potential. If this
is true, some heuristic method could be designed in order to
improve the performances of the rMC algorithm.

C. BP decimation

Given an instance of random graph we can run BP equa-
tions in Eq. �4� starting from random initial values for mes-
sages r�i→j. If we reach a fixed point of the equations then the
local marginals

bi =

e−	 	
j��i

�1 − r1
j→i�

e−	 	
j��i

�1 − r1
j→i� + 	

j��i

�1 − r00
j→i� − 	

j��i

r0
j→i

, �42�

will give us the approximate probability of �i=1 among the
set of mIS’s. One strategy of finding a mIS is to decimate the
most biased variables according to their preference. Suppose
that in the first run of algorithm variable i has the maximum
bias �1−2bi� among the variables. Then if, for example, bi
�1 /2 we fix �i=1 and reduce the problem to a simpler one
with smaller number of variables. The strategy in BP deci-
mation algorithm �57� is to iterate the above procedure till
we find a configuration of variables that satisfies all the con-
straints. Certainly if the believes bi that we obtain are exact
the algorithm would end up with a mIS, if there exist any.
Otherwise at some point we would find contradictions sig-
naling the wrong decimation of variables in previous steps.

The results of BP decimation algorithm have been sum-
marized in Table III. For the case K ,z=4, the minimum and
maximum density at which we are able to find a mIS for
graphs of size N=104 are also reported as black full circles in
Fig. 12.

Notice that similarly one can use a SP decimation algo-
rithm based on SP equations, to find a solution �here a mIS�.
This is usually more useful than BP decimation in problems
that exhibit a well-clustered solution space. In the case of
maximal independent sets we did not observe a significant
difference in the performance of the two algorithms. This is
the reason why here we focus on the BP decimation algo-
rithm which is more accessible.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have investigated the statistical proper-
ties of maximal independent sets, a graph theoretic quantity
that plays a central role both in combinatorial optimization
and in game theory. Among the most prominent applications
it is worth mentioning the development of distributed algo-
rithms for radio networks �5� and the study of public goods
allocation in economics �7�.

FIG. 14. �Color online� Example of the slowing down phenom-
enon taking place at large chemical potential in the “rearrangement
Monte Carlo” method explained in Sec. V B 3. The curves represent
the density of covered nodes in the mIS sampled by the rMC algo-
rithm as chemical potential 	 slowly increases �lower curve� or
decreases �upper curve� in an ER graph of N=103 nodes and aver-
age degree z=4.
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A long-standing problem in combinatorial optimization is
to estimate the number of maximal independent sets in a
given graph, and devise efficient algorithms to find them,
independently of their size. In the first part of the paper, we
have focused on some theoretical methods to compute the
number of mISs of size M in random graphs of size N. As in
general this number is exponentially large NmIS�eNs�M/N�,
we have used statistical mechanics methods to compute the
entropy s��� of maximal independent sets as a function of the
density �=M /N of coverings and of the average degree of
the graphs. At typical density values, the RS approximation
�BP equations� describes correctly the system. While the BP
equations remain stable in the low density region, for high
density of coverings the BP equations become unstable and
the RS solution does not hold anymore.

The general 1RSB calculations for random regular graphs
show a dynamical transition in a small interval of density
very close to the minimum density. However, the population
dynamics algorithm hardly converges to this solution. In the
high-density region we observe a condensation transition to
1RSB phase. Here, the solution has better convergence than
the 1RSB solution for low densities. Previous studies, for
instance in three-SAT problem �46�, show that these solu-
tions suffer from another kind of instability. A more detailed
study of stability of 1RSB solutions in this problem remains
to check for future works.

From the computational point of view, the main issue is to
find maximal independent sets at very low or very high den-
sity, within the bounds indicated by RS and first-moment
calculations. Greedy algorithms, such as Gazmuri’s one, can
find mISs at very typical values of the density, whereas
Monte Carlo methods and BP decimation can be used to
explore regions of nontypical values. Our numerical calcula-
tions indicate that BP decimation gives the best perfor-
mances, but the values at which we find solutions are still far
from the theoretically predicted bounds. Notice that despite
the dynamical transition in the low-density region, the ab-
sence of globally frozen variables could make the problem
easy on average in that region �44,49�.

We expect that the results we obtained here could be ex-
ploited to design more efficient algorithms. A first example is
represented by the rearrangement Monte Carlo algorithm,
that allows to move among the space of mISs sampling them
with a density-dependent Gibbs measure. Apart from dra-
matic slowing down faced by MC algorithms in presence of
RSB, the algorithm should be able in principle to reach all
existing mISs.

A maximal independent set on a graph G can be viewed as
a saturated packing of hard spheres of diameter d=2. So the
minimum and maximum mIS densities define the region one
can have saturated packings and in this paper we gave these
limits in the RS approximation. It would be interesting to see
how computational and physical properties of mISs change
by increasing diameter d.
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APPENDIX A: ANNEALED CALCULATIONS AND
BOUNDS IN RANDOM GRAPHS

We compute here some rigorous mathematical results on
the number of maximal independent sets with a given density
� of covered nodes. The first moment method allows to give
lower bounds �min

lower and upper bounds �max
upper for the density

of covered nodes in a mIS on random graph.
Let XM denote the number of mISs of size M in a graph G

of size N, from the Markov inequality we have

Prob�XM � 0� � X̄M , �A1�

where X̄M is the average number of mISs in the ensemble of
graphs of size N to which G belongs. If for some values of
M �N the average number of maximal independent sets of
size M becomes zero, then Markov inequality implies that
the probability to find a mIS of size M also vanishes.

In the Erdös-Rényi ensemble of random graphs G�N , p�,
the average number of maximal independent sets of size M is
given by �58�

X̄M = 
N

M
��1 − p��M�M−1��/2�1 − �1 − p�M�N−M . �A2�

For large N and M with fixed �=M /N and p=z /N, the

asymptotic behavior of the number of mIS is X̄M �eNs1���

where

s1��� = − � ln��� − �1 − ��ln�1 − �� −
1

2
z�2

+ �1 − ��ln�1 − e−z�� . �A3�

The density values, at which the entropy s1 becomes nega-
tive, give bounds for the existence of maximal independent
sets. Therefore, �min

lower is a lower bound for the density of
occupied nodes in the mis and �max

upper is an upper bound for
the density of occupied nodes in the MIS. The values of
�min

lower and �max
upper for ER random graphs with several values of

the average degree z are reported in the first and last column
of Table I.

The first moment calculation can be extended to RRG,
i.e., graphs in which connections are established in a com-
pletely random way with the only constraint that all nodes
have the same finite degree K �we will consider diluted net-
works, i.e., K�N�

It gives

X̄��� � 
 N

�N
��1 − �2�KN/2�1 − �1 − ��K��1−��N �A4�
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�exp N�− � ln��� − �1 − ��ln�1 − �� −
K

2
�2

+ �1 − ��log�1 − �1 − ��K�� . �A5�

As before, extracting the zeros of the entropy function for
various degrees K, we obtain the values of �min

lower and �max
upper

that are reported in Table II. As we will verify later compar-
ing these results with those from the cavity method, only the
lower bound is tight, whereas the upper one strongly overes-
timates the existence of mISs. However, the entropy values
at typical density of coverings �e.g., the maximum of the
entropy� are in agreement with other theoretical and numeri-
cal results, corroborating the validity of this improved an-
nealed calculation.

The annealed approximation we have just discussed only
gives an upper bound for the real number of mISs; therefore,
it would be important to have also a lower bound for the real
entropy curve s���. This is usually obtained by the second
moment method. Let XM

2 be the second moment of the num-
ber of mISs of size M in a graph of size N, Chebyshev’s
inequality provides a lower bound for the probability of find-
ing a mIS of size M,

Prob�XM � 0� �
X̄M

2

XM
2 . �A6�

For ER random graphs, the second moment is

XM
2 = �

l=0

M 
N

M
�
M

l
�
N − M

M − l
��1 − p�M�M−1�−��l�l−1��/2�

��1 − �1 − p�2M−l�N−�2M−l� �A7�

where l is the overlap between the two configurations corre-
sponding to mISs of size M. In the scaling limit, �=M /N
and x= l /N

XM
2 = N

0

�

dxeNs2��,x�. �A8�

Let us call x� the value of the overlap maximizing s2�� ,x�.
The density values where 2s1���−s2�� ,x�� vanishes should
give the lower bound �max

lower for the density of the MIS and
the upper bound �min

upper for the density of the mis. Unfortu-
nately, for ER random graphs, s2�� ,x�� is always larger than

2s1���, meaning that the ratio X̄M
2 /XM

2 always vanishes in the
thermodynamic limit. The corresponding trivial result
Prob�XM �0��0 does not say anything about the extremal
densities for MIS and mis. The same holds for the ensemble
of random regular graphs.

APPENDIX B: PROOF OF THE RESULTS OF SEC. III

Here are the proofs of the result shown in Sec. III, from
which we maintain the notation. Consider a finite network
and call �i� �0,1� the membership of node i to a set I. It is
clear that there is a one-to-one correspondence between any
subset of the nodes and any vector �� . We will consider those

�� for which I is a mIS in a given graph G. Call finally Ni
1 the

set of nodes which are first neighbors of node i, and Ni
2 those

which are second neighbors of node i. By definition of mIS,
we have that I is a mIS if and only if �� is such that

��i = 1 if � j = 0 for any neighbor j of node i

�i = 0 otherwise.
�
�B1�

Equation �B1� defines what is the best response dynamics.
For any node i there is always one strict best response given
any memberships’ configuration of its neighbors in Ni

1. This
would hold “a fortiori” also in a mIS configuration, and
hence proves that �� is locally frozen �Proposition 1�.

Proposition 2 tells us that the best response rule will im-
ply a new mIS, and that any best response dynamics of the
other nodes will be limited to the second degree neighbor-
hood of the node which initially flipped.

Proof of Proposition 2: suppose node i is in the mIS, so
that �i=1, and we remove it so that �i

new=0. Consider now
any node j in Ni

1, it is clear that � j =0 since �i=1. By best
response, for all those j�Ni

1 such that �k=0 for any k
�Nj

1 \ �i�, we will have � j
new=1. In the case that two such j’s

that flipped from 0 to 1 will be linked together, by best re-
sponse only some of them will flip to 1 �this is the only
random part in the best response rule�. If j is such that � j
=0 and � j

new=1, it is surely the case that any k�Nj
1 \ �i� was

playing �k=0 and remains at �k
new=0. Finally, if no neigh-

bors j�Ni flip from 0 to 1, we will allow node i to turn back
to its original position. The propagation of the best response
is then limited to Ni

1� �i� �and ends in an mIS, possibly the
old one�.

Note: a best response from 0 to 1 applies only to nodes
that are 0, are linked to a node which is flipping from 1 to 0,
and that node is the only neighbor they have who is origi-
nally 1.

Suppose now that �i=0 and we flip it so that �i
new=1. The

nodes j in Ni
1 who had � j =0 will continue to do so. Any

node j in Ni
1 �at least one� who had � j =1 will move to

� j
new=0. By the previous point this will create a propagation

to some k�Nj
1, but not i. This proves that the propagation of

the best response is limited to Ni
1�Ni

2 �and ends in a new
mIS�. �

Finally, we prove that any mIS can be reached in finite
steps, by best response dynamics, from any other mIS
�Proposition 3�.

Proof of Proposition 3. We proceed by defining interme-
diate mIS �� 1, �� 2 , . . . between any two mIS �� and �� � �asso-
ciated to I and I��. �� n+1 will be obtained from �� n by flipping
one node from 0 to 1 and waiting for the best response of all
the others.

If two mIS �� and �� � are different, it must be that there is
at least one i1 such that �i1

=0 and �i1
� =1 �by definitions any

strict subset of a maximal independent set is not a covering
any more�. Change the membership of that node so that �i1

1

=�i1
� =1. By previous proof this will propagate deterministi-

cally to Ni1
1 and, for all j�Ni1

1 , we will have � j
1=� j�=0.
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Propagation may also affect Ni1
2 but this is of no importance

for our purposes.
If still �� 1��� �, then take another node i2 such that �i2

1

=0 and �i2
� =1 �i2 is clearly not a member of Ni1

1 � �i1��. Pose
�i2

2 =�i2
� =1, this will change some other nodes by best re-

sponse, but not j�Ni1
1 � �i1�, because any j�Ni1

1 can rely on
�i1

1 =1, and then also �i1
2 =�i1

1 =1 is fixed.
We can go on as long as �� n��� �, taking any node in+1 for

which �in+1

n =0 and �in+1
� =1. This process will converge to

�� n→�� � in a finite number of steps because:
�i� when in+1 shifts from 0 to 1, the nodes j

��h=1
n �Nih

1 � �ih�� will not change, since they are either 0
nodes with a 1 node beside already �the 1 node is some ih,
with h�n�, or a 1 �some ih� surrounded by frozen 0 s;

�ii� by construction it is never the case that in+1
��h=1

n �Nih
1 � �ih�� because for all j��h=1

n �Nih
1 � �ih�� we

have that � j
n=� j�; and

�iii� the network is finite. �
The shift from �� to �� � is done by construction redefining

the covering of any �� n from the covering of �� �. It is always
certain that, by best response, any �� n is also an independent
set.

APPENDIX C: SURVEY PROPAGATION

Survey propagation �SP� �40� allows to study the 1RSB
phase �if any� in a simplifying limit where we have only one
parameter y=m	. The corresponding equations are called SP
equations and provide the behavior of the m=0 complexity
����.

If the solutions are clustered, the believes �r1
i→j ,r0

i→j ,r00
i→j�

are not distributed in the same way from cluster to cluster
�different Gibbs states�, therefore we have to introduce a
distribution of cavity fields. In writing SP equations we as-
sume that these distributions are P�r�i→j�=�a�a��ra

i→j

−1�	b�a��rb
i→j� for a ,b=0,00,1. Cavity equations thus

translate into equations for the surveys ��0 ,�00,�1�.
In the limit 	→−� they read

�1 =
e−y�1 − �1�K−1

1 + �e−y − 1��1 − �1�K−1 ,

�0 =
1 − �1 − �1�K−1

1 + �e−y − 1��1 − �1�K−1 ,

�00 = 0, �C1�

where e−y is the penalty favoring clusters �solutions� with
higher density. The density of occupied nodes is

� =
e−y�1 − �1�K

1 + �e−y − 1��1 − �1�K . �C2�

In the Bethe approximation

y� = y��i −
K

2
y��ij , �C3�

with

e−y��i = 1 + �e−y − 1��1 − �1�K,

e−y��ij = �0
2 + 2�1�0. �C4�

Solving numerically the equations we find that the complex-
ity is always a bit larger than the BP entropy, that is an
unphysical result. Figure 15 compares the complexity with
the RS entropy for K=3. The same behavior is observed for
larger degrees. Indeed, looking at the stability of this first set
of SP equations �details are reported in Appendix D�, it turns
out that the SP Eqs. �C1� are not stable in the whole large
density region.

In the other limit 	→+�, we find the equations

�1 � e−y��1 − �1�K−1 − �0
K−1� , �C5�

�0 � �1 − �00�K−1 − �0
K−1, �C6�

�00 � �0
K−1, �C7�

while the generalized thermodynamic potential is given by
the same expression but with

e−y��i = e−y�1 − �1�K + �1 − �00�K − �0
K,

e−y��ij = �0
2 + 2�1��0 + �00� , �C8�

with density � obtained as

� =
e−y�1 − �1�K

e−y�1 − �1�K + �1 − �00�K − �0
K . �C9�

In Appendix D, we show that the SP solution is stable in the
whole low-density region. However as in the high density
region we find a complexity that is a bit larger than the RS
entropy, see Fig. 15. As expected, m=0 is not the correct
approximation to describe our system in the 1RSB phase.

APPENDIX D: STABILITY ANALYSIS

1. RS stability

The BP equations for the mIS problem involve three cav-
ity fields ra

i→j with a=1,0 ,00, therefore in order to check the
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K=3: entropy
complexity(m=0)

FIG. 15. �Color online� Comparing 1RSB complexity for m=0
�dashed line� with the BP entropy �solid line�.
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stability of the RS solution we have to compute the response
induced in these fields by a small perturbation in the neigh-
boring cavity fields ra

k→i. The elements of the stability matrix

are obtained as Ma,b=
�ra

i→j

�rb
k→i ,

M1,1 = −
e−	�1 − r1�K−2

ZM
+ �1 − r1�� e−	�1 − r1�K−2

ZM
�2

,

M1,0 = 0,

M1,00 = �1 − r00�K−2e−	�1 − r1�K−1

ZM
2 , �D1�

M0,1 = ��1 − r00�K−1 − r0
K−1�

e−	�1 − r1�K−2

ZM
2 ,

M0,0 = −
r0

K−2

ZM
,

M0,00 = −
�1 − r00�K−2

ZM
+ �1 − r00�K−2 �1 − r00�K−1 − r0

K−1

ZM
2 ,

�D2�

M00,1 = r0
K−1e−	�1 − r1�K−2

ZM
2 ,

M00,0 =
r0

K−2

ZM
,

M00,00 = �1 − r00�K−2r0
K−1

ZM
2 , �D3�

with ZM =e−	�1−r1�K−1+ �1−r00�K−1.
If �M is the largest eigenvalue of M, computed at the

fixed point of the BP equations, then the �spin glass� stability
condition reads ��K−1��M

2 �1. If  is larger than 1, then
the perturbation is amplified by iteration and the RS solu-
tions are unstable fixed points of the BP equations. Figure 16
shows how  changes with density in random regular graphs
of degree K=3. The same behavior is observed for other
degrees.

2. SP stability

Suppose that, according to 1RSB picture, solutions are
organized in a large number of clusters that represent differ-
ent Gibbs pure states. There are two kinds of possible insta-
bilities: �a� states can aggregate into different clusters or �b�
each state can fragment in different states. We study here if
this can occur for the mIS problem in the two limits defining
the SP approximation.

a. Limit �\+�, m\0 (y=m�)

The first kind of instability is related to the divergence of
the inter-cluster spin-glass susceptibility, i.e., the instability

of SP fixed points on single graphs. Hence, the calculation is
equivalent to the RS case. We need the 3�3 matrix Ma,b

=
��a

i→j

��b
k→i , where a=1,0 ,00. We have

M1,1 = −
e−y�1 − �1�K−2

ZM
+

e−y��1 − �1�K−1 − �0
K−1�

ZM
2 �e−y�1

− �1�K−2� ,

M1,0 = −
e−y�0

K−2

ZM
+

e−y��1 − �1�K−1 − �0
K−1�

ZM
2 �e−y�0

K−2� ,

M1,00 =
e−y��1 − �1�K−1 − �0

K−1�
ZM

2 ��1 − �00�K−2� , �D4�

M0,1 =
�1 − �00�K−1 − �0

K−1

ZM
2 �e−y�1 − �1�K−2� ,

M0,0 = −
�0

K−2

ZM
+

�1 − �00�K−1 − �0
K−1

ZM
2 �e−y�0

K−2� ,

M0,00 = −
�1 − �00�K−2

ZM
+

�1 − �00�K−1 − �0
K−1

ZM
2 ��1 − �00�K−2� ,

M00,1 =
�0

K−1

ZM
2 �e−y�1 − �1�K−2� ,

M00,0 =
�0

K−2

ZM
+

�0
K−1

ZM
2 �e−y�0

K−2� ,

M00,00 =
�0

K−1

ZM
2 ��1 − �00�K−2� , �D5�

with

ZM = e−y��1 − �1�K−1 − �0
K−1� + �1 − �00�K−1. �D6�

If �M is the dominant eigenvalue of M then the first kind
stability condition reads

1 = �K − 1��M
2 � 1. �D7�

The second kind instability is instead related to intracluster
susceptibility, and can be studied by means of “bug prolif-
eration” defined on clusters. This means that we consider
how a change in a single cavity field from, say, a to b is
propagated to neighbors and how this reflects on the distri-
bution of surveys inside the cluster �Fig. 16�. If the instabil-
ity “bug” is �a→b, we need the transfer matrix Tab,cd satisfy-
ing to �a→b=�cdTab,cd�c→d. The iterative equations are

�1�1→0 =
1

ZM
��K − 1��0

K−2�00�00→1� ,

�1�1→00 =
1

ZM
��K − 1��0

K−2�00�00→0� ,
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�0�0→1 =
e−y

ZM
��K − 1��0

K−2�1�1→00� ,

�0�0→00 =
1

ZM
��K − 1��0

K−2�1�1→0� ,

�00�00→1 =
e−y

ZM
��K − 1��0

K−1�0→00� ,

�00�00→0 =
1

ZM
��K − 1��0

K−1�0→1� . �D8�

If �T is the dominant eigenvalue of T then the second kind
stability condition is 2=�T�1. In the present case, �T

= e−2y/3

ZM
�K−1��0

K−2 and the stability of SP solution is satisfied
in the whole low-density region, see Fig. 17.

b. Limit �\−�, m\0 (y=m�)

In the high-density limit, equations simplify because �00
=0 always and the matrix M reduces to the element

��1 = −
e−y�1 − �1�K−2

ZM
+

e−y�e−y − 1��1 − �1�2K−3

ZM
2 .

�D9�

with

ZM = 1 + �e−y − 1��1 − �1�K−1. �D10�

So for the first kind instability, the stable region satisfies
1= �K−1����1�2�1.

Similarly, equations for bug proliferation reduce to

�1�1→0 =
1

ZM
�1 − �1�K−1��K − 1��0→1� ,

�1 − �1��0→1 =
e−y

ZM
�1 − �1�K−1��K − 1��1�1 − �1�K−2�1→0� ,

�D11�

so to have second kind stability we need 2= �K−1�e−y/2

ZM
�1

−�1�K−2�1. Numerical solutions show that the SP solution
is unstable in the whole large-density region, see Fig. 17.

APPENDIX E: POPULATION DYNAMICS

In the paper we had to use population dynamics two
times; in the RS study of ER random graphs �Eqs. �13�–�15��
and in 1RSB study of random regular graphs �Eqs.
�16�–�21��. Population dynamics is a way of solving these
equations by representing a probability distribution with a
large population of variables. Let us describe how we solve
the equation in the 1RSB case which is similar but more
general than �Eq. �13�–�15��. This is the equation

P�r�i→j� � 	
k��i\j

dP�r�k→i�e−y�f i→j��r�i→j − BP� . �E1�

We define a population of size Np with elements r�a ,a
=1, . . . ,Np. Each r�a is a probability vector and frequency of
a vector r� in the population gives an estimate of P�r��.

We start by a random initial population and in each step
we update the population in the following way:
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FIG. 16. �Color online� Checking stability of BP equations: typi-
cal behavior of  �solid line�. Vertical dashed lines represent the
minimum and maximum densities predicted by BP equations.
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FIG. 17. �Color online� Checking stability of SP equations: typi-
cal behavior of 1 �upper picture� and 2 �lower picture� in the low
density �solid line� and large density �dashed line� region. Vertical
dashed lines represent the minimum and maximum densities pre-
dicted by BP equations.
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�i� select randomly members a1 , . . . ,aK−1 from the popu-
lation, here K is node degree;

�ii� use r�a1 , . . . ,r�aK−1 to find r�new and �fcavity according to
BP equations; and

�iii� with probability �e−y�fcavity replace a random member
of population with r�new,

After sufficiently large number iterations the population
reaches a stationary state that can be used to obtain the in-
teresting quantities. For instance the generalized free energy
� is given by

y� = y��i −
K

2
y��ij , �E2�

where the averages are taken over the population

− y��i = ln�e−y�f i�pop,

− y��ij = ln�e−y�f ij�pop. �E3�

Derivatives of � define the other average values.

APPENDIX F: TWO SUBPROBLEMS OF THE MIS
PROBLEM

In this appendix, we analyze the effects of the two con-
straints acting on the nodes of the graph separately.

1. Packing constraint

In this case we have only packing constraints Iij��i ,� j�,
which are satisfied if �i=0∨� j =0. Then BP equations are


i→j��i� � �
�k��i\j

	
k��i\j

Iik��i,�k�
k→i��k�e−	�i. �F1�

In random regular graphs �degree K� we take 
i→j�1�=r and
the BP equations simplify into

r =
e−	�1 − r�K−1

1 + e−	�1 − r�K−1 �F2�

Then the free energy reads 	f =	�f i−
K
2 	�f ij =	�−s,

e−	�f i = 1 + e−	�1 − r�K,

e−	�f ij = 1 − r2, �F3�

and �= e−	�1−r�K

1+e−	�1−r�K .

2. Hypercovering constraint

The covering constraints Ii��i ,��i� are satisfied if �i
+� j��i� j �0. The BP equations read


i→j��i,�i→j� � �
�k→i

	
k��i\j

Ik��k,��k�
k→i��k,�k→i�e−	�i.

�F4�

In fixed degree graph we can define the cavity fields as for
the full problem �r1

i→j ,r0
i→j ,r00

i→j� and we get

r1 =
e−	

e−	 + �1 − r00�K−1 ,

r0 =
�1 − r00�K−1 − r0

K−1

e−	 + �1 − r00�K−1 ,

r00 =
r0

K−1

e−	 + �1 − r00�K−1 , �F5�

The free-energy contributions are

e−	�f i = e−	 + �1 − r00�K − r0
K,

e−	�f ij = r1
2 + r0

2 + 2r1�r0 + r00� , �F6�

and �= e−	

e−	+�1−r00�K−r0
K .

The resulting curves for the BP entropy are displayed in
the representative case of K=3 in Fig. 18. The curve for the
packing problem is close to that of maximal-independent sets
for large density, whereas the hypercovering �or conjugate
lattice glass� curve does the same for low densities. Together,
the two curves define an envelope that gives an upper bound
for the BP entropy of the mIS’s problem.

APPENDIX G: HIGHER-ORDER INDEPENDENT SETS

Higher-order maximal independent sets are important for
applications in computer science and economics. In particu-
lar, maximal independent sets of order 2 are the specialized
Nash equilibria of the continuous model of public goods
game proposed by Bramoullé and Kranton in �6�.

In our CSP, a mIS of order n is obtained just by imposing
the condition that each empty node has at least n occupied
neighbors. For n=1 we recover the original mIS definition.
In general we write BP equations for the cavity fields r1

i→j

=R1,0
i→j, r�n−2

i→j =�m�n−2R0,m
i→j, and r�n−1

i→j =�m�n−1R0,m
i→j. On ran-

dom regular graphs, they read

r1 � e−	r�n−2
K−1 ,
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FIG. 18. �Color online� Comparing entropy of the packing �left
curve�, the covering �right curve� and mIS problems �middle curve�
on random regular graphs of degree K=3.
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r�n−2 � �
l=n−1

K−1 
K − 1

l
�r1

l r�n−1
K−1−l,

r�n−1 � �
l=n

K−1 
K − 1

l
�r1

l r�n−1
K−1−l. �G1�

Then the free energy reads

	f = 	�f i −
K

2
	�f ij = 	� − s ,

e−	�f i = e−	r�n−2
K + �

l=n

K 
K

l
�r1

l r�n−1
K−l ,

e−	�f ij = r�n−1
2 + 2r1r�n−2, �G2�

and

� = e−	r�n−2
K e	�f i. �G3�

In random regular graphs a maximal independent set of order
n=2 appears for the first time at K=5. For larger degree
values, the BP entropy is shown in Fig. 19. It is worthy
noting that the maximum entropy value increases for larger
degrees, in contrast to what happens in the n=1 case.
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